
INFECTION CONTROL MEASURES TO PREVENT BLOOD BORNE PATHOGENS (BBP)

(m) IT

E . 315

Kristine Luk

Pathogen	Exposure	Setting	Source
Argentinian VHF (Junin virus)	Nonintact skin	Contact with rodents' blood	73
Bolivian VHF (Machupo virus)	Needlestick, nonintact skin	Health care	74,75
Brazilian VHF (Sabia virus)	Needlestick	Research laboratory	18
Crimean Congo VHF	Nonintact skin	Health care	14
Dengue	Needlestick	Health care	1
Ebola VHF	Nonintact skin	Health care	76
Hendra virus	Nonintact skin	Veterinary care	77
Hepatitis B virus	Needlestick, nonintact skin	Health care	78
Hepatitis C virus	Needlestick, nonintact skin	Health care	2
Hepatitis D virus	Needlestick	Health care	8
Hepatitis G virus	Needlestick	Health care	10
Herpes simplex 1	Needlestick, nonintact skin	Health care	23,24
Human immunodeficiency virus I (HIV I)	Needlestick, nonintact skin	Health care	11,79
Kyasanur virus	Needlestick	Research laboratory	80
Lassa VHF	Nonintact skin	Health care	15
Marburg VHF	Needlestick, nonintact skin	Health care	81,82
Rift Valley Fever virus	Nonintact skin	Veterinary care	82
Simian Foamy virus	Nonintact skin	Animal handling	83
Simian immunodeficiency virus (SIV)	Splash to eyes	Research laboratory	84
Epizootic vesicular stomatitis	Nonintact skin	Veterinary care laboratory	85
Vaccine virus (recombinant)	Needlestick	Research laboratory	30
Varicella zoster virus (VZV)	Needlestick	Health care	2.5
Venezuelan VHF (Guanarito virus)	Nonintact skin (suspected)	Health care	86
Virus B (Herpes I)	Splash to eyes	Research laboratory	26,28
West Nile virus	Scalpel cut, needlestick	Research laboratory	22

Table I. Viruses that have caused documented occupational infection following exposure to BBF in HCW or laboratory personnel

VHF, viral hemorrhagic fever.

Yellow Fever virus

Nonintact skin (suspected)

87

Hospital laboratory

Table 2. Bacteria and rickettsia that have caused documented occupational infection following exposure to BBF in HCW or laboratory personnel

Pathogen	Exposure	Setting	Source
Brucella abortus	Needlestick	Research laboratory Veterinary care	88
Burkholderia mallei	Nonintact skin	Research laboratory	
Corynebacterium	Needlestick	Hospital laboratorys	
dibhteriae		i ioaphai iaon atorij.	
Corynebacterium striatum	Scalpel cut	Health care	92
Lebtosbira	Needlestick	Research laboratory	93
iaterohaemorragiae			
Mycobacterium leprae	Needlestick	Health care	94
Mycobacterium marinum	Needlestick	Hospital laboratory	95
Mycobocterium	Needlestick	Health care	96
tuberculosis			
Mycoplasma caviae	Needlestick	Research laboratory	97
Neisseria gonorrhoeae	Cut	Research laboratory	98
Orientia (or Rickettsia)	Cut	Research laboratory	99
tsutsugamuchi			
Pasteurella multoada	Needlestick	Veterinary care	100
Rickettsia rickettsi (Rocky	Needlestick	Health care	101
Mountain Spotted			
Fever)			
Rickettsia typhi (typhus)	Needlestick	Research laboratory	102
Staphylococaus aureus	Needlestick	Housekeeping	103
β-hemolytic	Scalpel cut	Autopsy	104
strepto coccus	-		
(S pyogenes)			
Streptococcus A	Nonintact skin	Health care	105
(necrotizing fasciitis)			
Treponema palidum	Needlestick	Research AIIC To	umtola Ah

Table 3. Parasites that have caused documented occupational infection following exposure to BBF in HCW or laboratory personnel

Pathogen	Exposure	Setting	Source
Leishmania species (6 species)	Needlestick, ronintact skin	Hospital laboratory	39,108
Plasmodium cynomolgi	Needlestick	Research laboratory	109
Plasmodium faláparum	Nonintact skin	Health care	3
Plasmodium malariae	Needlestick,	Health care	110,111
	nonintact skin		
Plasmodium vivax	Needlestick	Health care	109
	Undetermined	Autopsy	112
Toxoplasma gondi	Splash to eyes, needlestick	Research laboratory	39,113
Trypanosoma brucei	Needlestick	Hospital laboratory	39
Trypanosoma cruzi	Projection	Hospital laboratory	39

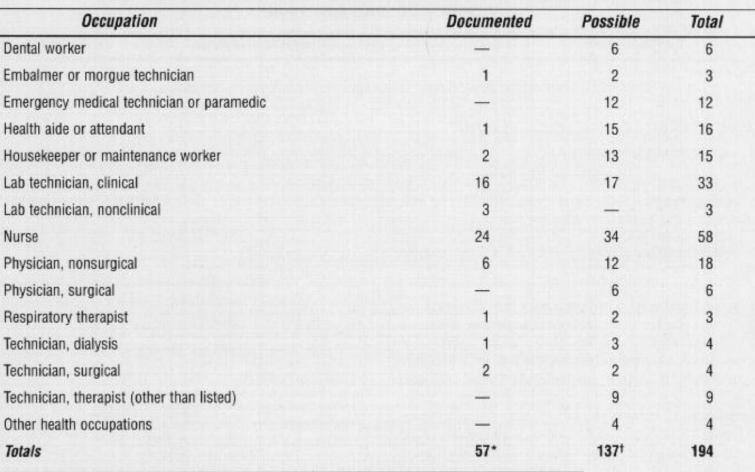
Table 4. Yeasts that have caused documented occupational infection following exposure to BBF in HCW or laboratory personnel

Pathogen	Exposure	Setting	Source
Blastomyces dermatitidis	Scalpel	Autopsy	114
Cryptococcus neoformans	Needlestick	Health care	5
Sporotrichum schenkii	Needlestick	Research laboratory	115

BBV TRANSMITTED IN HEALTHCARE SETTINGS

- ✤ 2 million HCV infections each year
- ✤ 21 million HBV infection each year

✤ 37.6% HBV, 39% HCV, 4.9% HIV in HCW due to needlestick injuries (NSI)


✤ No. of sharp injuries annually 0.18/HCW to 4.28/HCW (questionnaire by surgeons)

Occup Environ Med 2008;65:446-451

Table 3

Health Care Workers with Documented and Possible Occupationally Acquired AIDS/HIV Infection by Occupation in the United States Reported through June 30, 2001

(CDC, 2002)

*Of the 57 health care workers with documented seroconversion 48 had percutaneous exposures, five had mucous membrane or skin exposure, two had both percutaneous and mucous membrane or skin exposures and two had an unknown route of exposure. *Possible occupational exposures include those health care workers who have had a seroconversion to HIV, who did not have any other reported risk factors for HIV but for whom HIV seroconversion from an occupational exposure was not documented.

BBV TRANSMISSION INCIDENTS FROM HCW

	Details of transmission	Was a lookback undertaken?	Was phylogenetic analysis performed?	Additional comments
Dentist (Florida)	Six patients infected between 1987 and 1989. Exact mode of transmission not identified. Epidemiological data supported direct dentist to patient transmission rather than patient to patient transmission.	After the first transmission was identified, former patients of the dentist were publicly requested to have an HIV test. 1100 patients were tested.	Infected patients had DNA sequencing analysis, showing a high degree of similarity among their strains and that of the dentist. This was supported by evidence from phylogenetic trees.	All infected patients had undergone invasive procedures after the dentist had had his AIDS diagnosis.
Orthopaedic surgeon (France)	One patient infected in 1992 during a hip operation (category 3 EPP). The operation was described as lengthy and difficult.	Infected patient was identified during a lookback, initiated after the surgeon was diagnosed with AIDS. No additional transmissions identified after testing 983 of 3004 (33%) at risk patients.	Molecular analysis indicated that the viral sequences obtained from the surgeon and the patient were closely related. The patient had tested negative for HIV shortly before the operation.	CD4 count of the surgeon at diagnosis was 46 cells/ml (in 1994). The surgeon reported frequent percutaneous injuries, and was suspected to have been infected by a patient in 1983.
Nurse (France)	One patient infected in 1996, exact mode of transmission unclear. The nurse had an unclear history of having performed EPPs.	No further transmissions identified following testing of 2294 of 7508 (31%) at risk patients.	Extensive phylogenetic analysis undertaken. Results strongly supported HCW to patient transmission. Patient was HIV negative on pre-op screening.	HCW had advanced stage HIV infection and was co-infected with HCV.
Gynaecologist (Spain)	One patient infected during a caesarean section (category 3 EPP) in 2001.	Additional testing of 250 of 275 (91%) at risk patients did not reveal additional transmissions.	Phylogenetic analysis revealed genetic similarity of the HCW and patient viruses. The average nucleotide variation was 3%.	Patient was HIV negative during a pregnancy screen, and developed HIV symptoms shortly after the operation.

Management of HIV-infected healthcare workers - a paper for consultation. The Report of the Tripartite Working Group. DoH 2011. Accessed at: http://www.dh.gov.uk/en/Consultations/Liveconsultations/DH_131532.

HBV	Technician (Canada)	75 patients infected by an HBeAg positive technician who was implanting subdermal electrodes
HCV	CTS surgeon (USA)	14 patients infected (10000 operations over a 10 yr period)

RISK OF BLOOD CONTACT & Sharps Injury

The start

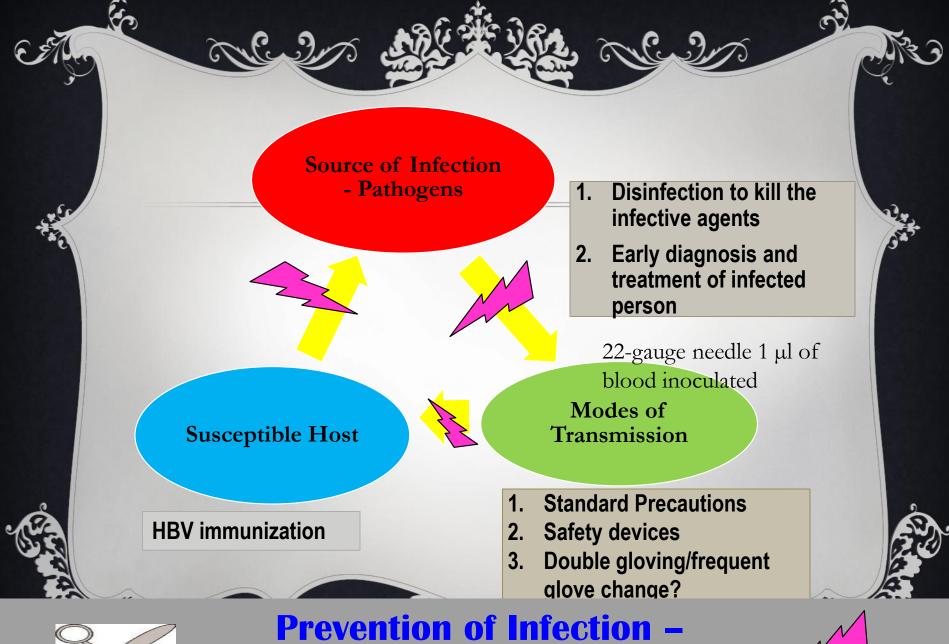
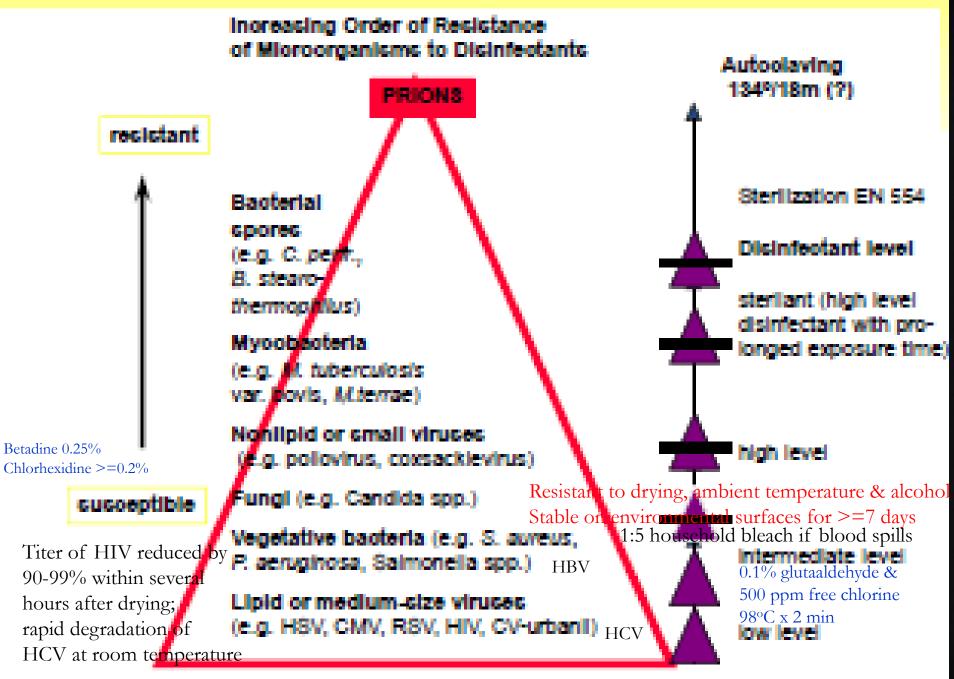

mc.2

TABLE 1. Prospective observational studies of blood contact among HCWs

Specialty and authors (reference)	Yr	Location(s)	No. of procedures observed	No. of procedures with ≥ 1 blood contact	% Procedures with ≥1 sharps injury
Surgery					
Tokars et al. (256)	1990	New York, N.Y.; Chicago, Ill.	1,382	46.6	6.9
Popejoy et al. (220)	1988	Albuquerque, N.Mex.	684	27.8	3.1
Quebbeman et al. (224)	1990 1988	Milwaukee, Wisc.	234	50.4 6.4	15.4 1.3
Gerberding et al. (116) Panlilio et al. (208)	1988-1989	San Francisco, Calif. Atlanta, Ga.	1,307 206	30.1	4.9
Tannio et al. (200)	1500-1505	Atlanta, Ca.	200	2001	4.2
Obstetrics					
Panlilio et al. (210)	1989	Atlanta, Ga.	230	32.2	1.7
Terrorise and states					
Invasive radiology Hansen et al. (130)	1992	Dallas, Tex.	501	3.0	0.6
Hansen et al. (150)	1992	Dailas, Tex.	501	3.0	0.0
Emergency room					
Marcus et al. (178)	1989	New York, N.Y.; Chicago, Ill.; Baltimore, Md.	9,793	3.9	0.1
Dentistry Cleveland et al. (77)	1993	New York, N.Y.	16,340	NAª	0.1
Cieverand et al. (77)	1990	New TOTK, IN. I.	10,340	NA	0.1

^a NA, not available.


73% suturing, >50% when fingers were used

Breakdown the Chain of Infection

Widmar AF, In: Manual of Clinical Morobiology American Society of Microbiology 2011

EARLY DIAGNOSIS AND TREATMENT

- ✤ 70% HBV, 60-80% HCV and 20% HIV acutely infected patients were asymptomatic
- Rely on clinicians' alertness to screen HIV (acute infections, opportunistic infections, TB patients)
- Promote screening in high risk groups (drug users, MSM etc.)
- Promote reporting of NSI (only 43% reported in US)
- Confidentiality issues (Need to know basis)
- Expert Review panel

◆Based on the concepts
that all of the following
should be treated as
potentially infectious:
✓ Blood
✓ All body fluids, secretions & excretions (except sweat)

- ✓ Non-intact skin
- ✓ Mucous Membrane

遇到下列情况,必須遵守 要許可以對於 Standard Precautions must be taken in the following situations

接觸血液、體液、分泌物、 排泄物、黏膜或傷口 必須戴上手套

Wear Gloves

when handling blood, body fluids, secretions, excretions, mucous membrane or non-intact skin

若有可能接觸濺出 血液或體液 必須戴上 口罩、眼罩 及穿上保護衣

切勿套回 已使用的針咀

小心處理 針咀及利器

接觸血液、體液、 分泌物、排泄物、 黏膜、傷口, 或除下手套後 應立即潔手 Wear a Mask, Protective Eyewear and a Gown to protect yourself

from splashed blood or body fluids

No Recapping

Handle Sharps Carefully

Perform Hand Hygiene Immediately

after taking off gloves or handling blood, body fluids, secretions, excretions, mucous

WHY GLOVE?

men?

<10% occupationally HBV infected HCW recalled a specific percutaneous injury.
 Br Med J 1982; 284:1408-1982.

✤ 50% reduction in blood volume during simulated needlesticks with hollow bore needles

* 80% reduction in blood transferred with suture needles

J Infect Dis 1993; 168: 1589-1592

Ew) .

WHY HAND HYGIENE AFTER GLOVE REMOVAL

- ✤ Leak rate for sterile gloves (2.5%) & exam gloves (4%): 1989 FDA
- Study reported that leak rates for surgical gloves (up to 8%); latex & vinyl gloves (7-20% & 34-63%)

AJIC 1989;17:196-201; J clin Micro 1990; 28: 787-788; Nurs Res 1989;38 : 144-146

 Study reported that there are pits suggesting the viruses can penetrate this barrier gloves
 Nature 1988;335-19

Convenient placement of sharps containers decrease needlestick injuries by 60%

Dispose Sharps Immediately & Properly

nc. 2 m Mil Fill nc. 2 m

E 50%

IV related percutaneous injuries decreased by 72 -100% following the introduction of needleless

Needleless

Devices

246

PUR

24G x 3/4"

4251601-0 OF12258301

Needle Cap

Holder

Resheathable & bluntable needles reduced percutaneous injuries during phlebotomy by 23-76%

Blunt needles

 \mathcal{C}

Q.C. 9

Type of suture needlesPercutaneous injuriesBluntNoCurved1.9/1000 usedStraight14.2/1000 used

(...).

Glove liner

Knitted gloves

Glove liners, knitted gloves and triple gloves all show less perforations to the innermost glove compared with double gloving

DOUBLE GLOVING -EVIDENCE?

Single gloving vs Double gloving - perforations to innermost gloves (OR
4.10, 95% CI 3.30 to 5.09 – 14 trials).

✤ Indicator gloves – more perforations detected (OR 10 – 12.5)

Cochrane Database Syst Rev 2002;3:CD003087 In a simulation in which the surgeon tied surgical knots continuously for 1 hr, visible skin separations were observed on his index fingers and HBsAg was detected in the saline used to rinse out his gloves

Differences between Routine Change every 20min and 3x per Surgery

all and

	Study group		
	Pairs of gloves	Pairs with perforations (%)	
Surgeon	120	5 (4.2)	
Assistant	116	4 (3.4)	
Nurse	118	6 (6.1)	
* Calculated using chi-squared test			

Control group

Pairs of gloves	Pairs with perforations (%)	p value*
94	11 (11.7)	0.04
88	6 (6.8)	0.27
91	15 (16.5)	0.01

Al Malyah M et al, J Bone Joint Surg 2005;87-8:5564

Vite Rent

HBV VACCINATION – FREQUENT QUESTIONS

>90% healthy recipients develop protective antibody response
30-50% of individuals will respond to the second 3 dose series
21-60% of HCW had non-reactive titers > 7 -8 years after vaccination.

✤ Immune memories intact for >=12 yrs, even though anti-HBs
 levels may become low or undetectable.
 Lancet 1995; 345: 1089-1092

BBV INFECTED HCW

- Category I: Procedures with minimal risk of BBV transmission
 e.g. minor surface suturing, elective peripheral phlebotomy,
 colonoscopy/sigmoidoscopy
- Category II: Procedures for which bloodborne virus transmission is possible but unlikely

e.g. Periodontal scaling, minor local procedures, other endoscopy

Category III: Procedures for which there is definite risk of BBV transmission /'exposure-prone' (digital palpation of a needle tip in a body cavity or the simultaneous presence of the HCWs fingers and a sharp instrument in a poorly visualized or highly confined anatomic site)

e.g. General surgery, open resuscitation, open surgical procedure > 3 hrs

SHEA GUIDELINE 2010

الر (میں)

mar 2

TABLE 1. Summary Recommendations for Managing Healthcare Providers Infected with Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), and/or Human Immunodeficiency Virus (HIV)

Virus,			
circulating viral burden	Categories of clinical activities ^a	Recommendation	Testing
HBV			
<10 ⁴ GE/mL	Categories I, II, and III	No restrictions ^b	Twice per year
$\ge 10^4 \text{ GE/mL}$	Categories I and II	No restrictions ^b	NA
$\ge 10^4 \text{ GE/mL}$	Category III	Restricted ^c	NA
HCV			
<10 ⁴ GE/mL	Categories I, II, and III	No restrictions ^b	Twice per year
$\ge 10^4 \text{ GE/mL}$	Categories I and II	No restrictions ^b	NA
$\ge 10^4 \text{ GE/mL}$	Category III	Restricted ^c	NA
HIV			
$<5 \times 10^2 \text{ GE/mL}$	Categories I, II, and III	No restrictions ^b	Twice per year
$\geq 5 \times 10^2 \text{ GE/mL}$	Categories I and II	No restrictions ^b	NA
$\geq 5 \times 10^2 \text{ GE/mL}$	Category III	Restricted ^d	NA

FOR BBV INFECTED HCW

Lower viral load

Double gloving for Category

II & Category III procedures

Frequent glove changes,
 particular for tasks known to
 compromise glove integrity (e.g.
 placing sternal wires)

High viral load with restrictions in practice

Double gloving for all invasive
 procedures and all indications of
 gloving

UK DH GUIDANCE

✤ HIV-infected HCWs can perform EPP if they are on cART and have a

plasma viral load suppressed consistently to <200 copies/ml (Retest at 3 months)

Management of HIV-infected healthcare workers - a paper for consultation. The Report of the Tripartite Working Group. DoH 2011. Accessed at: <u>http://www.dh.gov.uk/en/Consultations/Liveconsultations/DH_131532</u>.

- ✤ HBV infected HCW can perform EPP if HBV DNA <10³ GE/mL (Retest at 12 months)
- ✤ HCV infected HCW can perform EPP only if circulating HCV RNA is negative

(Retest at 6 months)

EFFICACY OF STANDARD PRECAUTIONS

✤ Mean no. of blood exposures 35.8 /yr -> 18.1/yr

No. of occupational HBV infections in HCWs ~10000 in 1983
 x3-5 greater risk of contracting HBV Vs 400 (x5 less risk) in 2002
 (CDC, unpublished data)

CLINICAL MICROBIOLOGY REVIEWS, July 2000, p. 385-407

